SCHEME OF STUDIES AND SYLLABUS OF FOURTH SEMESTER DIPLOMA IN COMPUTER SCIENCE & ENGINEERING (C-21)(34)

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION JSS POLYTECHNIC FOR THE DIFFERENTLY ABLED, MYSURU-06 Curriculum Structure

IV Semester Scheme of Studies- Diploma in Computer Science and Engineering(C-21)

1 V V	Jemesu	ci Schem	e of Studies-Diploma					anu								
	ry/		Course Name	Hours per week		Ma	CIE Mark s		E rk		ing	e				
Sl. No.	Course Category Teaching Department	Course Code	arse Code		Т	P	Total contact hrs /week	Credits	Max	Min	Max	Min	Total Marks	Min Marks for Passing (including CIE marks)	Assigned Grade	Grade Point
						Integrate l Courses										
1	PC/CS	3441	Data structures with Python	3	1	4	8	6	60	24	40	16	100	40		
2	PC/CS	3442	Operating System and Administration	3	1	4	8	6	60	24	40	16	100	40		
3	PC/CS	3443	Object Oriented Programmingand Design with Java	3	1	4	8	6	60	24	40	16	100	40		
4	PC/CS	3444	Software Engineering principles and practices	3	1	4	8	6	60	24	40	16	100	40		
						Audit Course	•									
5	AU/CS	3445	Indian Constitution	2	0	0	2	2	50	20	-	-	50	20		
			Total	14	4	16	34	26	290	116	160	64	450	180		

*PC: Programme Core:: AU-Audit Course:: L: Lecture:: T: Tutorial:: P: Practice

Government of Karnataka

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

JSS POLYTECHNIC FOR THE DIFFERENTLY ABLED, MYSURU-06

Program	Computer Science & Engineering	Semester	III	
Course Code	3441	Type of Course	Program Core	
Carrage Name	Date Characteristic Dath and	Combont House	8 hours/week	
Course Name	Data Structures with Python	Contact Hours	128 hours/semester	
Teaching Scheme	L:T:P::3:1:4	Credits	6	
CIE Marks	60	SEE Marks	40	

1. Rationale

Data structures are the techniques organizing data and of designing the algorithms for real-life projects. Knowledge of data structures is essential for software design and development. Learning data structures with Python offer flexibility and ease of programming with many built in data structures and libraries.

2. Course Outcomes: At the end of the Course, the student will be able to:

CO-1	Explain data structures types, list their applications.
CO-2	Apply the right Algorithm design strategies to solve a given problem.
CO-3	Choose the right data structure to develop solution to a given computing problem.
CO-4	Analyze space and time complexities of the algorithm used and plot a graph.

Mapping of CO with PO & PSO

COURSE	COs	Program Outcomes (POs)							Program Specific Outcomes (PSOs)		
		1	2	3	4	5	6	7	1	2	
	CO-1	1	2	2	2	0	0	2	0	2	
Python	CO-2	1	2	2	2	0	0	2	0	2	
Programming	CO-3	1	2	2	2	0	0	0	0	2	
	CO-4	1	2	2	2	0	0	2	0	2	
AVG	1	2	2	2	0	0	2	0	2		

Level 3: Highly Mapped Level 2: Moderately Mapped Level 1: Low Mapped Level 0: Not Mapped

3. Course Content

Week	со	PO	Lecture (Knowledge Criteria) 3 hours/week	Tutorial (Activity Criteria) 1 hour /week	Practice (Performance Criteria) 4 hours/week (2 hours/batch twice in a week)
1,2	1	1,2,3	Introduction to Data Structures, operations, classification, Characteristics. Primitive types – primitive data structures, python examples. Non primitive types - Non primitive data structures, python examples. Linear and nonlinear data structures – with python examples. Introduction, Abstractions, Abstract Data Types, An Example of Abstract Data Type (Student, Date, Employee), Defining the ADT, Using the ADT, Implementing the ADT.	Refer Table 1	 Python program to Use and demonstrate basic data structures. Implement an ADT with all its operations.
3	1,2,4	1,2, 3,4,7	Algorithm Analysis – Space Complexity, Time Complexity. Run time analysis.	Refer Table 1	 Implement an ADT and Compute space and time complexities. Implement above solution using array and Compute space and time complexities

			Asymptomatic notations, Big-O Notation, Omega Notation, Theta Notation.		and compare two solutions.
4	1,2,4	1,2, 3,4,7	Algorithm design strategies: Brute force – Bubble sort, Selection Sort, Linear Search. Decrease and conquer - Insertion Sort.	2.	Implement Linear Search compute space and time complexities, plot graph using asymptomatic notations. Implement Bubble, Selection, insertion sorting algorithms compute space and time complexities, plot graph using asymptomatic notations.
5	1,2,4	1,2, 3,4,7	Divide and conquer - Merge Sort, Quick Sort, Binary search. Dynamic programming - Fibonacci sequence Backtracking - Concepts only (Implementation examples with recursion in week 10). Greedy - Concepts only.	 2. 3. 	Implement Binary Search using recursion Compute space and time complexities, plot graph using asymptomatic notations and compare two. Implement Merge and quick sorting algorithms compute space and time complexities, plot graph using asymptomatic notations and compare all solutions. Implement Fibonacc
6,7	1,2, 3,4	1,2, 3,4	Linear (arrays) v/s nonlinear (pointer) structures – Run time and space requirements, when to use what? Introduction to linked list, Examples: Image viewer, music player list etc. (to be used to explain concept of list), applications.	1.	sequence with dynamic programming. Implement Singly linked list (Traversing the Nodes, searching for a Node, Prepending Nodes, Removing Nodes)
			The Singly Linked List- Creating Nodes,		

8	1,2, 3,4	1,2,	Traversing the Nodes, searching for a Node, Prepending Nodes, Removing Nodes. Linked List Iterators. The Doubly Linked List, Examples: Image viewer, music player list etc. (to be used to explain concept of list).		Implement linked list lterators.
9	1,2, 3,4	1,2, 3,4	DLL node, List Operations – Create, appending nodes, delete, search. The Circular Linked List- Organization, List Operations – Appending nodes, delete, iterating circular list.	Refer Table 1	Implement DLL. Implement CDLL
10	1,2, 3,4	1,2, 3,4	Last In First Out (Stack) Data structures – Example: Reversing a word, evaluating an expression, message box etc. (to be used to explain concept of LIFO). The Stack implementation – push, pop, display. Stack Applications- Balanced Delimiters, Evaluating Postfix Expressions		Implement Stack Data Structure. Implement bracket matching using stack
11 12	1,2, 3,4	1,2, 3,4	Recursion. Properties of Recursion. Recursive functions: Factorials, Recursive Call stack, The Fibonacci Sequence. How Recursion Works- The Run Time Stack. Recursive Applications- Recursive Binary Search, Towers of Hanoi.	Refer Table 1	 Program to demonstrate recursive operations (factorial/Fibonacci) Implement solution for Towers of Hanoi.
13	1,2, 3,4	1,2, 3,4	The First In First Out (Queue) Data structure - Example: Media player list, keyboard buffer queue, printer queue etc. (to be used to explain concept of FIFO). Implementing the Queue and its operations using Python List.	X X	 Implement Queue. Implement priority queue

C – 21 CURRICULUM 2022-23/ COMPUTER SCIENCE & ENGINEERING

Tot	al in Ho	ours	48	16	64
16	1,3,4	1,2,	Introduction to Hashing. Hashing - Perfect hashing functions. Hash table Hash Functions, Operations, Hash collision, Application.	Refer Table 1	1.Implement Hash functions
15	1,2,4	1,2, 3,4	Depth-first traversal Breadth-first traversal Tree applications: Expression evaluation.		 Implementations of BFS. Implementation of DFS.
14	1,2, 3,4	1,2, 3,4	The Tree data structure – Example: File explorer/Folder structure, Domain name server. Tree Terminologies, Tree node representation. Binary trees, Binary search trees, Properties, Implementation of tree operations – insertion, deletion, search, Tree traversals (in order, pre order and post order).		Implement Binary search tree and its operations using list.
			Priority Queues, Implementation.		

Table 1: Suggestive activities for tutorials

Sl. No.	Activity								
1	Design a Data structure for handling Student Records- Designing a Solution, Implementation (Using Basic DS).								
2	Design a Data structure for handling Student Records- Designing a Solution, Implementation (Using ADT).								
3	Optimize your solution for Bubble sort								
4	Implement Merge Sort								
5	Implement Selection sort								
6	Implement Insertion Sort								
7	Implement Radix sort.								
8	Prepare report on nonlinear data structures								
9	Design and implement sparse matrix representation using linked list.								
10	Design and implement simple application that requires DLL data structure.								
11	Implement and demonstrate evaluating postfix expression.								
12	Presentation on run time stacks.								
13	Design and implement priority queue data structure.								
14	Prepare a Report on balanced trees.								
15	Implement expression evaluation tree.								
16	Prepare a report on hashing and analyze time complexity.								

4. CIE and SEE Assessment Methodologies:

Sl. No.	Assessment	Test week	Duration in Minutes	Max Marks	Conversion
1	CIE-1 Written Test	6	80	30	A
2	CIE-2 Written Test	11	80	30	Average of 3 tests 30
3	CIE-3 Written Test	15	80	30	30
4	CIE-4 Skill Test Practice 8		180	100	Average of two skill
5	CIE-5 Skill Test Practice	IE-5 Skill Test Practice 16		100	tests reduced to 20
6	CIE-6 Portfolio continuous evaluation of Activity through Rubrics	1-16		10	10
		60			
Se	emester End Examination (I	Practice)	180 100		40
		100			

5. Format for CIE Written Test:

Course Name	Data Structures with Python	Test	I/II/III	Sem	IV
Course Code	3441	Duration	80 Min	Marks	30

Note: Answer any one full question from each section. Each full question carries 10 marks.

Section	Assessment Questions	Cognitive Levels	Course Outcome	Marks
I	A or B			
II	C or D			
III	E or F			

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment):

_	ion	Beginner	Satisfactor v	Good	Excellent	Outstanding	core
SI. No	Dimension	2	4	6	8	10	Student score
1	Problem Understanding	Not understoo d the problem	Partially understood the problem	understood the overall problem	Well understood aspect of the problem	Well understood each and every aspect of the problem	
2	Program Correctness	Program not works	Program only works correctly in very limited cases	Major details of the specification are missed & program works correctly only for a few inputs.	Few details of program specification are missed & program works correctly for some inputs.	No errors & program works correctly for all types of input and meets the specifications.	
3	Readability	No comments present throughou t the program.	Complicate d lines or sections of code are not commented	At least one major issue with indentation, whitespace, variable names, or organization .	Minor issues with consistent indentation, use of whitespace, variable naming, or general organization .	No errors, understandabl e, and well- organized.	
4	Code Efficiency		No efficiency at all, very poor approach used	Not so efficient	Moderately efficient with respect to space and time	Very efficient with respect to space and time	
					Average	Marks=Total/4	

7. Reference:

Sl. No.	Description
1	Data Structures and Algorithms using Python by Rance D. Necaise
2	Python Data Structures and Algorithms by Benjamin Baka
3	www.geeksforgeeks.com

8. CIE Skill Test and SEE Scheme of Evaluation

Sl. No.	Particulars/Dimension	Marks
1	Develop an algorithmic solution for the given problem statement based on the documentation of each of the steps involved, including input, output and logic.	20
2	Write program for the above given problem choosing relevant python constructs	20
3	Code, execute, test and debug the above program	30
4	Demonstrate how your program has solved the given problem In the event of, a student fails to get the desired result (with no syntactical and least semantic errors), the examiner shall use viva voce to assess the student's problem solving and python programming skills	20
5	Portfolio evaluation based on aggregate of all practice sessions	10
	Total Marks	100

9. Equipment/software list with Specification for a batch of 20 students:

Sl. No.	Particulars	Specification	Qty.
1	Python 3.6		
2	Editor such as iPython, Jupyter, Spider, PyCharm		
3	Computers		20

Government of Karnataka

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

JSS POLYTECHNIC FOR THE DIFFERENTLY ABLED, MYSURU-06

Programme	Computer Science and Engineering	Semester	III
Course Code	3442	Type of Course	Programme Core
Course Name	Operating System and Administration	Contact Hours	8 hours/week 128 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale

The Operating System knowledge and skill is an integral part in the study of computer science. It provides the platform for all other application to run on the machine, thus knowledge of operating system and administration becomes indispensable for understanding computing environment. It is essential to have knowledge of operating system's services and utilities to develop, deploy and maintain the software and hardware. The students will also be skilled in operating system virtualization, to create and manage virtual computing environment.

2. **Course Outcome**: At the end of the course, the student will be able to:

CO-1	Explain functions and services of an operating system.
CO-2	Create a virtual environment and configure it to meet a specific application requirement.
со-3	Identify and use Linux commands to create and manage simple file processing operations, organize directory structures, and develop shell script to automate given simple task.
CO-4	Demonstrate the role and responsibilities of a Linux system administrator and analyse problems using suitable diagnostic tools and resolve issues.

Mapping of CO with PO & PSO

COURSE	CO'S	Programme Outcomes (POs)						Program Specific Outcomes (PSOs)		
		1	2	3	4	5	6	7	1	2
	CO1	3	2	2	1	0	0	3	0	3
Operating System	CO2	3	3	1	2	0	0	3	0	3
and Administaration	CO3	3	3	3	3	0	0	3	0	3
	CO4	2	3	3	3	0	0	3	0	3
AVG		2.75	2.75	2.25	2.25	0	0	3	0	3

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped

3. Course Content

Marsh	60	PO	Lecture (Knowledge Criteria)	Tutorial (Activity Criteria)	Practice (Performance Criteria)
Week	СО	PO	3 hours/week	1 hour/week	4 hours/week(2 hours/batch twice in a week)
1.	1	1,7	Overview of Operating System, Need for OS, Structure, OS Types, Examples of OS (desktop and mobile) Dual mode operation, Kernel and microkernel, Functions of OS User interfaces; Corporate Vs Personal needs; Types of OS installation	ole 1	 Types of OS installation Boot methods File System and formatting Post installation tasks
2.	1,2	1,7	Virtualization technology, working, types , Potentials and challenges of Virtualization, Virtual Machines, Containers. Linux Boot process. Linux command line - Interpreter, shell, CLI over GUI, Types of users- super and normal, Linux user manual.	Refer Table 1	 Install and configure virtual machine-Virtual box/VMware, VMware player station. Download and install a terminal emulator and connect Linux VM via TE(optional). Significance of man command.

3.	1,3	1, 7	File system - Pathnames, File system structure and its description, navigating the file system. File types, attributes, Access Control List (ACL), Adding text to file. Pipes, File Comparison,		File and Directory commands: 1. Create and delete directories and files, File movement, copy commands, Pipes (named & unnamed) 2. Commands for viewing File, File comparison, File manipulation, Altering file permission, File compression and decompression.
			Filters / Text Processing Commands. Process Management –		Text processing commands Linux commands
4,5	1	1, 2, 3, 7	Process Management – Process, daemon, process states, PCB; Process scheduling Queue Operations on Processes – Process creation, Process termination, Interprocess communication. Scheduling - Long term, short term, and medium term; Context switch; Different types of CPU schedulers		related to process creation and management-system calls fork() and exec(); bg, fg, nohup, pkill, nice, top, ps; 2. cron and at commands to schedule tasks.
			(Basic concept), Process priority; debugging (system hang)		
6,7	1, 3	1, 2, 3, 4,	Process synchronization- critical section problem, Semaphores; Deadlock- System model, methods for handling deadlocks, deadlock prevention, avoidance, detection, recovery from deadlocks. Threads - Multithreading	ole 1	 Demonstration through videos. Commands to exhibit thread concepts.
		,	models, Threads, and processes. Types of threads - Kernel level and User level	Refer Table 1	
8.	1	1, 2, 3, 4,	Memory management – Process address space, static vs dynamic linking and loading. Swapping, Memory		 Demonstration through videos. Commands to view memory consumption

			Paging, Segmentation; Virtual memory, Demand paging, Page replacement algorithm (concept only)		
9.	1	2, 3, 4, 7	Shell Programming: Basics of shell programming, types of shell in Linux, Basic Shell scripts- Shebang or Hashbang, Input & Output, decision making and iterative scripts.		1. Write shell scripts to illustrate decision making and different types of iterations; Ex- to perform string operations; to perform file operations;
10.	1	2, 3, 4, 7	Automation of system tasks: Writing scripts to automate common tasks.		1. Illustrate automation of basic tasks like monitoring memory consumption, check remote servers' Connectivity, etc., at different
11.	1	2, 3, 4	Network Management Network components- IP address, subnet mask, gateway. Network Interface management; Communication. Data transfer facilitation. Diagnosis and troubleshooting; Resource analysis.		frequencies. 1. Enable internet on Linux VM. 2. Test and manage network using following commands ifconfig, iwconfig, ethtool, arpwatch, bmon, telnet, ssh, sendmail, mailstats, w cURL, wget, ftp, rcp, scp, rsync, sftp. netstat, ping, traceroute, iftop, nload, ss. tcpdump, dstat
12.	2, 4	2, 4, 7	User authentication User and Group account management. Working on interface. Linux Directory Service - Account Authentication, what is LDAP and Active Directory? LDAP structure, working.	Refer Table 1	1. Work on user accounts useradd, passwd, userdel, usermod, groupadd, groupmod, gpasswd, groupdel; system-config. 2. OpenLDAP Installation 3. LDAP server and client configuration.

Tot	tal in hours	48	16	64
16	2, 3, 4, 7	Storage management: Disk partition, formatting, mounting; Logical Volume Management (LVM)- Use of LVM, creating Volume groups, logical volume and disk mirroring, Extend Disk using LVM, Adding Swap Space Introduction to RAID – Hardware & Software, RAID levels.'		 Basic commands for storage partitions. Install and configure LVM. Add Disk and CreateStandard & LVM Partition. Add virtual disk and create a new LVM partition(pvcreate vgcreate, lvcreate) Extend disk using LVM
14, 15	2, 4 3, 4, 7	Server setup: DNS-Introduction, Configuration, creating DNS zone, using DNS tools; FTP- Installation process, configuration and securing; setting up an Apache Web Server(http)		 Install and configure: DNS server with a domain name of your choice. FTP server on LINUX and transfer files to demonstrate it's working. Apache web server and create virtual hosts.
13	2, 3, 4, 7	System monitoring, Log monitoring System maintenance, System information. System architecture, Linux Boot process and System run levels, System updates and repositories.		1. System monitoring commands top, df, dmesg, iostat 1, free, cat /proc/cpuinfo, cat/proc/meminfo; 2. Work on log directory-/var/log; 3. System maintenance commands- shutdown, reboot, halt, init. 4. System update & repositories- yum & rpm.

Table 1: Suggestive activities for tutorials (the list is only shared as an example and not inclusive of all possible activities for that course. Student and faculty are encouraged to choose activities that are relevant to the topic and the availability of such resources at their institution)

	1. Compare features of different OS(windows, Linux, RTOS-Vxworks/android)
1.	2. Study the evolution of OS to recognize the importance of current OS trends.
	3. Explain the different flavors of LINUX.
	1. Explain OS level virtualization and state its benefits.
2.	2. Compare VMs and Containers
۷.	3. Identify the difference between hypervisors and Linux containers.
	4. Comprehend the benefits of virtualization.
3.	1. Compare ex2/ex3 filesystem attributes.
J.	2. Discuss the file- mount and unmount system calls.
4.	1. Compare Linux fork () and Windows createprocess () functions.
	Study probable conditions for deadlock occurrence and how to overcome it.
5.	2. Identify relationship between threads and processes.
	3. Comprehend the differences between types of threads
6.	1. Compare the features of swapping and paging.
7.	1. Compare different Linux shells.
	1. Write a cron job that runs all essential apps. on an hourly/
8.	daily/weekly/monthly basis. (for ex.
	2. Executing Antivirus)
9.	1. Compare static and DHCP IP addresses and check whether these can be
).	switched over.
10	1. Study different options offered by Linux for package management.
11	Identify few alternatives to openLDAP and make a comparison.
12	1. Explore other network commands required for a sysadmin and interpret their
12	functions and usage.
13	1.Study the difference between application server and web server.
14	1.Identify the role of virtual host.
15	1.Explain different types of Apache virtual hosts and how they are set up
16	1.Compare the features between RAID and SSD.

4. CIE and SEE Assessment Methodologies

Sl. No.	Assessment	Test Week	Duration	Max Marks	Conversion		
1.	CIE-1 Written Test	6	80	30	- Average of		
2.	CIE-2Written Test	11	80	30	three tests		
3.	CIE-3Written Test	15	80	30	30		
4.	CIE-4 Skill Test- Practice	8	180	100	Average of two skill		
5.	CIE-5 Skill Test- Practice	16	180	100	tests reduced to 20		
6.	CIE-6 Portfolio continuous evaluation of Activity through Rubrics	1-16		10	10		
	То	tal CIE M	arks		60		
Se	Semester End Examination (Practice) 180 100						
	Total Marks						

5. Format for CIE written Test

Course Name	Operating System and Administration	Test	I/II/III	Sem	III/IV
Course	3442	Duration	80 Min	Marks	30
Code					
Note: Ans	wer any one full q	uestion fron	n each sectio	on. Each full	question
carries 10	marks.				
Section	Assessment Questi	ons	Cognitive	Course	Marks
	_		Levels	Outcome	
I	1 OR				
	2				
II	3 OR				
	4				
III	50R				
	6				
Note for the	L Course coordinator: Eac	h question may	have one, two	 or three subdivi	sions.

Questions in each section carry the same weightage of marks, Cognitive level and course

outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment)

	I	Rubrics: Stud	ent Activity A	ssessment		
Dimension	Poor	Below average	Average	Good	Exemplary	Student
	4	8 12		16	20	Score
Collection of data	Does not collectany information relating to the topic	Collects very limited information; some relate to the topic	much information; but very limited relate to the	Collects some basic information; most refer to the topic	Collects a great deal of information; all refer to the topic	
Fulfill team's roles/& duties	Does not perform any duties assigned to the team role	Performs very little duties but unreliable.	Performs very little duties	Performs nearly all duties	Performs all duties of assigned team roles	
Shares work equally	Always relies on others to dothe work	Rarely does the assigned work; often needs reminding	Usually does the assigned work; rarely needs reminding	Normally does the assigned work	Always does the assigned work without having to be reminded.	
Listen to other Teammates Is always talking; doesmost of other Teammates Is always talking; doesmost of the talking; anyoneelse to speak Is always to speak Usually doesmost of but never show talk too interest in listening others others others Talks good; Listens, but sometimes speaks a far amount others others						
			Total Marks:			

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

C – 21 CURRICULUM 2022-23/ COMPUTER SCIENCE & ENGINEERING

8. Reference

Sl.	Description.
No.	Description
1.	Operating System internal and Design Principles, William Stallings
2.	Operating System, Garry Nut
3.	https://www.redhat.com/en/topics/virtualization
4.	<u>Virtual Machine - an overview ScienceDirect Topics</u>
5.	DNS: https://www.youtube.com/watch?v=TiWs9n4fhys&list=RDCMUCQSpnDG3YsFNf5-qHocF-WQ &index
6.	Linux system admin requirements: https://www.temok.com/blog/linux-system-administration/
7.	Linux commands for modern sysadmins- N/W related - https://www.ubuntupit.com/useful-linux- network-commands-for-modern-sysadmins/
8.	DNS Technology: https://www.digitalocean.com/community/tutorials/an-introduction-to-dns-terminology-components-and-concepts
9.	Commands for Disk Management: https://www.programmersought.com/article/55913754022/

9. CIE Skill Test and SEE Scheme of Evaluation

No.	rticular s/Dimension	rks
1.	Create virtual environment and configure it to meet given application requirement	20
2.	Write and execute a shell script to automate a given task using appropriate Linux commands.	30
3.	Demonstrate Linux administration skills in configuring and maintaining a server.	20
4.	Explain the working above written shell script and procedure to configure the server, In the event of student failing to explain the working of shell script and procedure to configure the server, examiner shall use viva-voce to check the knowledge of student on operating system services and responsibilities of operating system administrator.	20
5.	Portfolio evaluation of practice sessions.	10
	Total Marks	100

10. Equipment/Software list with Specification for a batch of 20 students

. No.	Particulars	Specification	Quality
1.	Computer		20
2.	Virtual Box, Ubuntu or any other Linux OS image.		20

Government of Karnataka

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

JSS POLYTECHNIC FOR THE DIFFERENTLY ABLED, MYSURU-06

Programme	Computer Science and Engineering	Semester	IV
Course	3443	Type of	Programme Core
Code		Course	
Course	Object Oriented Programming and	Contact	8 hours/week
Name	Design with Java	Hours	128 Hours /
			Semester
Teaching	L:T:P :: 3:1:4	Credits	6
Scheme			
CIE Marks	60	SEE Marks	40

1. Rationale

Object oriented programming paradigm with object-oriented design principles is vital in design and development of today's complex computing solutions. OOD principles provide valuable standards and guidelines to create clean and modular design and avoid code smells. Java being the popular object-oriented programming language that empowers the innovation in this digital world, students will have sound knowledge of object-oriented programming concepts and design principles with java.

2. Course Outcomes: At the end of the course, the student will be able to:

CO-1	Design a solution for a given problem using object-oriented programming concepts and apply all appropriate object-oriented design principles
CO-2	Write and test the code for a designed solution using java OOP concepts.
CO-3	Identify exceptions in the designed or given solution and explain how to resolve them.
CO-4	Demonstrate with an example a java application's connection with a database.

CO-PO/PSO Mapping Matrix:

Carrent	60V-	PO's PSG						PSO's	;		
Course	CO's	1	2	3	4	5	6	7	1	2	3
Object Oriented	CO1	2	3	3	2	2	1	3	-	3	2
Programming	CO2	2	3	3	2	2	1	3	-	3	2
and Design with	CO3	2	3	3	2	2	1	3	-	3	2
Java	CO4	2	1	1	2	1	1	3	-	3	2
AV	ERAGE	2	2.5	2.5	2	1.75	1	3	-	3	2

Level 3- Highly Mapped, Level 2-Moderately Mapped,

Level 1-Low Mapped, Level 0-Not Mapped

3. Course Content

Wee k	со	Lectur e (Knowledge Criteria) 3 Hours/Week	Tutorial (Activit y Criteria) 1 Hour / Week	Practice (Performance Criteria) 4 hours/week (2 hours/batchtwice in a week)
1	1,2	Introduction to Java: Brief history; features; java architecture; Components: JVM, JRE, JDK;		Install and Setup javaenvironment Install java editor (Eclipse for Enterprise Java) and configure workspace
2	1,2	Applications; Java environment setup; Structure of java program; Compilation and execution of java program; Clean coding in java.	able 1	 Execution of first javaprogram Java code execution process
3	1,2	Introduction to OOP: Building blocks: class, object, attributes, methods; Class and objects injava.	Re	Code, execute and debug programs that uses different types of variables and data types.
4	1,2	Variable: Types (local, instance, static); declaration, initialization; comments; Data types;		Identify and resolve issues in the given code snippet

5	1,2	Constructors: rules for defining constructor; types; Destructor; Access modifiers; this' keyword; Auto boxing and unboxing; Operators; Expressions; Evaluation of expressions;		 Code, execute anddebug programs that uses different types of constructors for expressionevaluation to perform auto boxing and unboxing Identify and resolve issues in the given code snippet
6	1,2	Memory allocation in java; garbage collection: concept, working, types, advantages finalize () method;		1. Install memory monitoring tool and observe how JVM allocates memory 2. Memory allocation explanation through the programs
7	1,2	Conditional and Iterative statements Decision making: if, ifelse, switch Iterative: need of iterative statements; types of loops in java; how to use them; Break and continue statements;		 Code, execute and debug programs that uses different control statements Identify and resolve issues in the given code snippet
8	1,2,	OOP concepts: Encapsulation Concept; What is encapsulation? How to		 Code, execute and debug programs that uses encapsulation concept. Define class & implement like simple calculator or text processing and check compliance with SRP.
9	1,2	Arrays: Why arrays? Features, types, Declaration, array creation with new operator, working with arrays; Strings: creation, string methods;		 Code, execute and debug programs that uses array concept Code, execute and debug programs to perform string manipulation.
10	1,2	OOP concepts: Inheritance Inheritance concept; types; Inheritance in java; Examples; Open Closed principle: Intent; Rules; Benefits; example	Refer Table 1	 Code, execute and debug programs that uses inheritance concept Design a class & implement like file parser and check compliance with OCP.

		00P concepts:		1. Code, execute and
		Polymorphism		debug programs that
11	1,2	Polymorphism concept;		uses
	-,-	types: method overloading		a. static binding
		and overriding; application;		b. dynamic binding
		polymorphism in java;		b. dynamic binding
		sufficient examples;		
		sufficient examples,		1. Code, execute and
				debug programs tha
		OOD concents. Abstraction		uses
		OOP concepts: Abstraction		
		Overview; implementation of		
10	1.0	abstraction in java: abstract		achieve abstraction
12	1,2	class and interface;		3. interface to achieve
		Relationship between class and		abstraction
		interface; inheritance in		4. Verify whether the
		interface; Examples to		given code snippet is
		substantiate the		correct according to
		understanding of concepts; Eg.		abstraction or not
		File parser; message logger		
				Code, execute and
				debug programs injava
				to
		Files : Files and I/O streams:		a. handles checked and
13	1,2,	File reader andwriter;		unchecked exceptions
	3			b. read the content of the
				file and write the
				content to another file
		Exception handling		Incorporate exception
		Exception concept; exceptions in		handling in programs
14	1.2.3	java; classification: checked and		/applications developed in
- 1	_,_,	unchecked; exception handling in		previous sessions.
		java;		previous sessions.
		Design principle:		Design an interface 8
15	1,2,	Interface Segregation		implement it like one tha
-5	3	principle: Intent; Rules;		builds different types of toy
		Benefits; examples; Enums;		and check compliance with
	1	Overview of java annotations;		ISP.
	1	Database Connectivity	e 1	Code, execute and debug
		Introduction to JDBC; JDBC	Refer Table 1	
16	1 2	, , ,	Ţ	programs to connect to
16	1,2,	components; How JDBC	fer	database through JDBC and
	3,4	works? JDBC connections;	Ref	perform basic DI
		Connect java application to	_	operations.
Т	tal	database using JDBC;	1.0	
10	tal	48	16	6
				4

Table 1: Suggestive activities for tutorials (the list is only shared as an example and not inclusive of all possible activities for that course. Student and faculty are encouraged to choose activities that are relevant to the topic and the availability of such resources at their institution)

Sl.	Activity
No	
1	1. Identify various java IDEs and identify differences between them.
1	2. Compare and contrast Java with Python
	1. Study and present
	a. type casting in java
2	b. what are command line arguments in java?
	c. java keywords and their usage
	1. Compare and contrast
3	a. method and constructor;
	b. constructor and destructor
4	1. Study and present how does byte code work in java.
5	1. Present nesting of conditional and iterative statements considering a use case.
	Identify advantages and disadvantages of
6	a. Encapsulation.
	b. Inheritance
	Identify advantages and disadvantages of
7	a. Abstraction
	b. Polymorphism
	Study and report
8	java Arrays class their methods
9	Study and report
	java String class their methods
10	Identify and document how these principles help to avoid code smells.
	a) SRP b) OCP c) ISP
	Compare and contrast
11	a. static and dynamic binding and identify usage of each
	b. abstract class and interface, identify usage of each
12	1. Differentiate error and exception
40	2. Identify and document system exceptions
13	Study DRY principle, identify the benefits.
14	Identify how 00D principles violations impact the quality of code.
15	Identify java ORM frameworks and their features.
16	Study and find the inclusions in latest java versions.

4. CIE and SEE Assessment Methodologies

Sl.	Assessment	Те	st	Duration	Max	Conversion
No		We	ek	In minutes	marks	
1.	CIE-1 Written Test	6		80	30	Average of three
2.	CIE-2 Written Test	11		80	30	tests 30
3	CIE-3 Written Test	15		80	30	10313 30
4.	CIE-4 Skill Test-Practice	8		180	100	Average of two
5	CIE-5 Skill Test-Practice	16		180	100	skilltests and
		10 100		100	reduced to 20	
	CIE-6 Portfolio continuous					
6	evaluation of Activity	1-16			10	10
	throughRubrics	1 10			10	10
			•	Total	CIE Marks	60
Semester End				180	100	40
	Examination (Pra	ictice)				
		100				

5. Format for CIE written Test

Course Name	Object Oriented and	Programming	Test	I/II/III	Sem	III/IV
	Design with Java					
Course Code	3443		Duration	80 Min	Marks	30

Note: Answer any one full question from each section. Each full question carries 10 marks.

Section	Assessment Questions	Cognitive	Course	Marks
		Levels	Outcome	
I	1 OR 2			
II	3 OR 4			
III	5 OR 6			

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment)

0.	sion	Beginner	Satisfactor y	Good	Excellent	Outstanding	score
Sl. No.	Dimension	2	4	6	8	10	Student score
1	Problem Understandin $oldsymbol{g}$	Not understoo d the problem	Partially understood the problem	understood the overall problem	Well understood aspect of the problem	Well understood each and every aspect of the problem	
2	Program Correctness	Program not works	Program only works correctly in very limited cases	Major details of the specification are missed & program works correctly only for a few inputs.	Few details of program specification are missed & program works correctly for some inputs.	No errors & program works correctly for all types of input and meets the specifications.	
3	Readability	No comments present throughou t the program.	Complicate At least one major issue ent sections of ughou code are not with whitespace,		Minor issues with consistent indentation, use of whitespace, variable naming, or general organization .	No errors, understandabl e, and well- organized.	
4	Code Efficiency		No efficiency at all, very poor approach used	Not so efficient	Moderately efficient with respect to space and time	Very efficient with respect to space and time	
					Average	Marks=Total/4	

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

C – 21 CURRICULUM 2022-23/ COMPUTER SCIENCE & ENGINEERING

7. Reference:

Sl. No.	Description
1	https://docs.oracle.com/javase/tutorial/java/concepts/
2	www.edureka.co
3	Clean Code by Robert C Martin
4	https://www.javabrahman.com/programming-principles/
5	https://medium.com/

8. CIE Skill Test 1 Scheme of Evaluation

SL No	Particulars/ Dimension	Marks
1	Develop a solution for a given problem using object-oriented programming concepts	20
2	Write program for above given problem using appropriate java OOP concepts.	20
3	Code, execute, test and debug the above program	30
4	Demonstrate the how your program has solved the given problem In the event of, a student fails to get the desired result (with no syntactical errorsand least sematic errors), the examiner shall use viva voce to assess the student understanding of OOP concepts and java code execution process.	20
5	Portfolio evaluation based on aggregate of all practice sessions	10
	Total Marks	100

Note: For CIE skill test 2, SEE scheme of evaluation shall be used.

9. SEE Scheme of Evaluation

SL No	Particulars/D imension	Marks
1	Develop a solution for a given problem using object-oriented programming	20
	concepts	
2	Write program for above given problem using appropriate java OOP concepts.	20
3	Code, execute, test and debug the above program	30
	Demonstrate how your program has solved the given problem and compliance of your solution with object-oriented design principles.	
4	In the event of, a student fails to get the desired result (with no syntactical errors and least sematic errors), the examiner shall use viva voce to assess the studentunderstanding of OOP concepts and OOD principles	20
5	Portfolio evaluation based on aggregate of all practice sessions	10
	Total Marks	100

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
1	Computers		20
2	Java 8.0 and above, eclipse		20

Government of Karnataka

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

JSS POLYTECHNIC FOR THE DIFFERENTLY ABLED, MYSURU-06

Programme	Computer Science and Engineering	Semester	III
Course Code	3444	Type of Course	Programme Core
Course Name	Software Engineering principles and practices	Contact Hours	8 hours/week 128 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale

Digital reality has become an integral part of human life with software tools being used to deal with virtually every part of life. A process is key to develop a quality software successfully. Principles and practices of software engineering blends engineering, computing, project management and software development. It's essential to understand the life cycle of software development and the process followed to develop a quality software. Design thinking methodology encourages identifying alternative strategies and solutions to solve a problem in best possible way.

2. Course Outcomes: At the end of the Course, the student will be able to:

CO-01	Explain the typical software development life cycle (SDLC), list and differentiate the various SDLC models along with identifying where each model could be beneficial when applied.
CO-02	Demonstrate the application of design thinking as a process, explain how it helps in requirement engineering and mitigate risks.
CO-03	Study a given application requirement, create user stories, draw the appropriate UML diagram and validate to ensure user story/UML diagram meet with the given requirement.
CO-04	Document standard test procedures and test cases for a given requirement to ensure the software gives the desired results for which it is built.

Mapping of CO with PO & PSO

COURSE	COs	Programme Outcomes (POs)						Program Specific Outcomes (PSOs)		
		1	2	3	4	5	6	7	1	2
	CO1	3	3	3	3	2	3	2	0	2
Software Engineering	CO2	3	3	3	0	2	3	2	0	2
principles and	CO3	3	3	0	3	2	3	2	0	2
practices	CO4	3	0	0	3	2	3	2	0	2
AVG		3	3	3	3	2	3	2	0	2

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped

3. Course Content

Week	СО	PO	Lecture (Knowledge Criteria)	Tutorial (Activity Criteria)	Practice (Performance Criteria)
Week	CO	3 hours/week		1 hour/ week	4 hours/week (2 hours/batch twice in a week)
1,2	1	1	Overview Software engineering; Need of software engineering; Software paradigms; Software product types: generic, customized; characteristics of good software; Challenges in software projects; Factors that influence software development; understanding success Software process; need of process, Components of process, process activities;		1. Discuss success and failure stories 2. Presentation of collected case studies Enact the importance of ethical practices
			Differentiate product, project andprocess; process assessment and improvement; Software engineering ethics.		

				1. Case study to understand the SDLC
3,4	1	1,5	SDLC and Process Models SDLC; Software process model; How to choose process model? Comparison between a defined process and an empiricalprocess; Traditional process models: waterfall; Incremental; Agile process- manifesto; principles; practices; A paradigm shift from plan driven mentality.	2. Organize and playgames to understand the agile process like,morning wake up game the marshmallow challenges White Elephant Sizing Easter Egg Challenge 3. Create JIRA (similar tool) account and learninterface
5.	1	1,5	Agile frameworks; Ceremonies; Roles; Overview of XP – XP practices Scrum: Overview; framework; ceremonies and artifacts	1. Play and act agile ceremonies 2. Play different agileroles Eg. Product owner, business analyst
6.	1,2	1	Risk Risk, characteristics, categories; why risk management is critical; risk management framework; Activities; Principles of risk management, Risk identification, Risk assessment – risk analysis; risk prioritization; Risk Mitigation; need and importance of risk mitigation; Risk Control – planning, resolution, monitoring; How to use tool to manage and mitigate risks in an organization.	1. case study to understand the importance of risk management and mitigation of risk 2. How to use tools tomanage and mitigate risks [eg. Logicgate, AuditBoard etc]
7.	2	1,2	Design Thinking Introduction, 5 stages of design thinking Understand the	1. Conduct warmup activities to IgniteDesign Thinking

			process of design thinkingusing an example Case Study	2.	Organize and conduct design thinking exercises and games
8.	1,3	1,2	Requirement Engineering & Modeling Overview; what is requirement? Importance; Requirement types; Sources of requirements; Requirement engineering Process; Feasibility study; Typical Requirements Engineering Problems; Requirement modeling strategies; Overview of UML; types of diagrams; Note: Take a case study to understand requirement engineering and prepareuse cases or user stories	 2. 3. 4. 	playfor requirement activities Identify a problemand prepare requirement document or Epicsand user stories
9.	1,3	1,2,4	What are user stories? Why user story? Basic concepts; Characteristics; How to write/create user stories? Steps; 3C's in user stories; Life cycle of user story. Userstory map. Estimation: User story point: basics; components of story point estimation; Steps involved in estimation;	1.	Create detailed user stories for theabove identified problem Organize and playplanning poker todecide on user points.

10.	1,2	1,2,3	Design Objectives; design Concepts; Levels ofdesign; Architectural styles; Monolithic and Microservices; UI and UX: Overview of UI and UX, UI types, essential properties, elements of UI design; relationship between UI and UX; Importance of good UI/UX. Wireframes: overview, purpose, benefits;	Create sitemap and wireframe for above created user stories.(Too such as sketch, Adobe XI Figma, etc can be used)
11.	1	1,2,3,4	Development Overview of DevOps; working principle; Benefits; DevOps culture; DevOps practices: continuous integration, continuous delivery, version control, configuration management,Build process;	1. Create Git (similar tool) account and configure repository 2. Upload the artifacts created to Git 3. Learn version control and configuration management with Git
12.	1	1,2,3,4	Code quality and code security: overview;importance; issues caused by poor code; tools to check code quality Containerization: Container, why container, containerization; working principle; benefits; Hello world example Note: Docker or similar tool can be used to explain the containers.	 Install and configure Jenkins Create a container image for Hello world project Setup build for container image using Jenkins (Hello world application)
13.	1,4	1,4	Testing Principles of testing; Need of testing; stages; Testing process and activities; classification; Testing strategies; Levels of software testing;	 Prepare Test plan for the user stories using JIRA Prepare RTM for the user

Total in Hours			48	16		64
			sigma and Lean process			
			Quality and Process improvement tools and techniques – pareto chart, PDCA cycle, Six			
15,16	1,4	1	Auditing fundamentals: auditing, elementsof auditing; audit types; auditing methods,benefits of auditing.		2.	
			Concept of software quality, Compliance, Quality Standards, quality control, qualityassurance; Difference between QC & QA. Need for auditing.		1.	Organize Roleplayto understand the roles and responsibilities of QA and QC team.
			Quality Control and Assurance			
14.	1,4	1	Metrics Measurement; need of Measurement; types;Metrics: characteristics; classification; Agile metrics; Application monitoring.		2.	capture agile metrics
			Software Measurement and		1.	Use JIRA or similartool to
			be explained in detail)			cases forthe user stories created.
			(Integration testing, functional testing, end- to-end testing need to		3.	
			Software testing types;			stories created

Table 1: Suggestive activities for tutorials (the list is only shared as an example and not inclusive of all possible activities for that course. Student and faculty are encouraged to choose activities that are relevant to the topic and the availability of such resources at their institution)

Sl. No.	Activity
1.	Study the traffic signal and the importance of rules and process.
2.	Visit various consulting company web portals and collect case studies.
3.	Document the roles and responsibilities of different agile ceremonies
4.	Identify cost of risk;
	Identify commonly used risk management tools.
5.	Identify a problem and explain how design thinking can be applied to solve it.Design a shopping cart to achieve ease of use, applying design thinking.
6.	Prepare RPM requirement traceability matrix for shopping cartList the criteria to select the requirement management tools.
	Identify different requirement management tools and list their features.
7.	Identify frequently used UML diagrams and also identify tools used to draw them.
8.	Explore agile estimation techniques and prepare a report.
9.	Study boiler plate and present necessary characteristics of boiler plate for a large and small project
10.	Identify different DevOps Tools and list their featuresStudy and report OWASP coding guidelines
11.	Learn and report Twelve Factor App methodology
12.	Identify different version control and configuration management tools and report their marketshare
13.	Compare and contrast containerization and virtualization and identify importance of these insoftware development Identify container providers
14.	Study and prepare report on testing tools.Compare manual and automation testing
15.	Study and prepare report on widely used software metrics.
16.	Identify different quality tools and report their features and usage

4.CIE AND SEE Assessment Methodologies

Sl. No.	Assessment	Test Week		iration in ninutes	_	lax. arks	Conversion	
7.	CIE-1 Written Test	6		80		30	Average of three	
8.	CIE-2 Written Test	11		80		30	tests	
9.	CIE-3 Written Test	15		80		30	30	
10.	CIE-4 Skill Test	8		180		100	Average of two	
11.	CIE-5 Skill Test	16		180		100	Skill tests 20	
12.	CIE-6 Portfolio continuous 12. evaluation of Activity throughRubrics 1-16						10	
	60							
	Semester End Examination(Practice) 180 100							
	Total Marks							

5.Format for CIE Written Test

Course Name	Software Engineering principles and practices	Test	1/11/111	Sem	III/IV
Course Code	3444	3444 Duration	80 Min	Marks	30
te: Answer any	y one full question from e	ach section. Eac	ch full question o	carries 10 mar	ks.
Section	Assessment Que	estions	Cognitive	Course	Marks
			Levels	Outcome	
1.	1 or 2				
2.	3 or 4				
3.	5 or 6	·			

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

6.Rubrics for Assessment of Activity (Qualitative Assessment)

	I	Rubrics: Stud	ent Activity A	ssessment			
Dimension	Poor	Below average	Average	Good	Exemplary	Student	
Dimension	4	8	12	16	20	Score	
Collection of data	Does not collectany information relating to the topic	Collects very limited information; some relate to the topic	Collect much information; but very limited relate to the topic	Collects some basic information; most refer to the topic	Collects a great deal of information; all refer to the topic		
Fulfill team's roles/& duties	Does not perform any duties assigned to the team role	Performs very little duties but unreliable.	Performs very little duties	Performs nearly all duties	Performs all duties of assigned team roles		
Shares work equally	Always relies on others to dothe work	Rarely does the assigned work; often needs reminding	Usually does the assigned work; rarely needs reminding		Always does the assigned work without having to be reminded.		
Listen to other Teammates	Is always talking; never allows anyoneelse to speak	Usually doesmost of the talking; rarely allows others to speak	Talks good; but never show interest in listening others	Listens, but sometimes talk too much	Listens and speaks a fair amount		
	Average / Total Marks:						

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7.Reference:

Sl. No.	Description
1.	Agile Software Development, principles, patterns and practices by Robert Martin
2.	Art of agile development by James Shore & Shane Warden
3.	Extreme programming explained: embrace change
4.	Software-Engineering-9th-Edition-by-Ian-Sommerville
5.	RPL7th_ed_software_engineering_a_practitioners_approach_by_roger_spressman_
6.	Becoming Agilein an imperfect world by Greg Smith, Ahmed Sidky
7.	scaledagileframework.com
8.	Continuous Delivery Principles Atlassian
9.	www.agilealliance.org/
10.	www.udemy.com
11.	www. tutorialride.com
12.	www.interaction-design.org/
13.	www.digite.com

8.SEE Scheme of Evaluation

SL.	Particulars/Dimension	Marks			
No.		Maiks			
1.	Capturing the requirements of the client, documenting, reviewing and acceptance by the client of the documented requirement for given the problem statement.	30			
2.	Identify and document at least two associated risks for the above case.	20			
3.	Create user stories for the above requirements and draw a UML diagram using any of the modeling technique.	30			
4.	Document test suite for the above requirement. Viva-Voce, In the event of student unable to document a test suite, then studentshould be allowed to explain the test procedure.	20			
Total Marks					
Note: F	Note: For CIE skill test 2, SEE scheme of evaluation shall be used.				

5. Equipment/software list with Specification for a batch of 20 students

Sl.	Particulars	Specification	Quantity
No.			
1.	Computers		20
2.	Git, Jira, SonarCube, Lucidchart or any other UML design tool		

Government of Karnataka

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

JSS POLYTECHNIC FOR THE DIFFERENTLY ABLED, MYSURU-06

Programme	Audit Course	Semester	IV	
Course Code	3445	Type of Course	Audit	
Course Name	Indian Constitution	Contact Hours	2 hours/week	
Course Name	indian Constitution	Contact Hours	32 hours/semester	
Teaching Scheme	L:T:P :: 2:0:0	Credits	2	
CIE Marks	50	SEE Marks	Nil	

1. Course Outcomes: At the end of the Course, the student will be able to:

CO1	Understand Preamble, salient features and importance of Indian Constitution.
CO2	Understand Fundamental rights, duties and Directive principles of state policy.
CO3	Understand Parliamentary system of governance, Structure, Functions, Power of Central, state governments (Legislative, Executive) and Judiciary.
CO4	Understand Panchayat Raj Institutions and Local self-governments, UPSC, KPSC, NHRC, Status of women, RTE etc.

Mapping of CO with PO & PSO

COURSE CO'S		Programme Outcomes (POs)						Program Specific Outcomes (PSOs)		
		1	2	3	4	5	6	7	1	2
Indian Constitution	CO1	0	0	0	0	3	2	3	0	0
	CO2	0	0	0	0	3	2	3	0	0
	CO3	0	0	0	0	3	2	3	0	0
	CO4	0	0	0	0	3	2	3	0	0
AVG		0	0	0	0	3	2	3	0	0

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped

2. Course Content

Week	СО	Detailed Course Content	Contact Hours	
1.	1	Introduction to constitution of India-Formation and Composition of the Constituent Assembly-Salient features of the Constitution-Preamble to the Indian Constitution		
2.	1,2	Fundamental Rights- Definition, The right to equality, The right to freedom, The right against exploitation, The right to freedom of religion.		
3.	1,2	Cultural and educational rights and The right to constitutional remedies. Fundamental Duties, Directive principles of state policy.	2	
4.	1,3	Parliamentary system of governance- Structure of Parliament- Lok Sabha andRajya Sabha. Functions of parliament- Legislative, Executive, Financial Function Powers of Lok Sabha and Rajya Sabha.	2	
5,6	1,3	Procedure followed in parliament in making law, Annual financial statement (Budget) – procedure in parliament with respect to estimates, Appropriation bill, Supplementary, additional grants, Vote on account, votes on credit and exception grant, special provisions, rules of procedure.	2	
7.	1,3	Structure of union executive, Power and position of President.Vice President, Prime minister and council of ministers.	2	
8.	1,3	Structure of the judiciary: Jurisdiction and functions of Supreme Court, highcourt, and subordinate courts.	2	
9.	1,3	Federalism in the Indian constitution- Division of Powers: Union list, State listand concurrent list. Structure of state legislation, Legislative assembly and Legislative council.	2	
10.	1,3	Functions of state legislature, Structure of state executive-Powers and positions of Governor, Speaker, Deputy Speaker, Chief Minister and council of minister.	2	
11.	4	Local self-government- meaning-Three tier system, Village Panchayat-Taluk panchayat Zilla panchayat, Local bodies-Municipalities and Corporations, Bruhath Mahanagara Palike, Functions of Election commission, UPSC, KPSC.	2	
12,13	4	Amendment of the constitution, Human Rights-Definition-constitutional provisions-right to life and liberty-Human Rights of Women-Discriminationagainst women steps that are to be taken to eliminate discrimination against women inEducation, employment, health care, Economic and social life,	2	
14,15	4	Status of Women in India - Women in rural areas, Constitutional Safeguards -Dowry Prohibition act 1961- Domestic violence act 2005- Sexual harassmentat work place bill 2006. Human Rights of Children- Who is a child- list the Rights of the Child- Right to education, Protection of Children from Sexual Offences Act (POCSO)-2012-	2	
16	1,4	National Human Rights Commission Constitution- Powers and function of the Commission-Employee rights- Provisions made, Contractual-Non contractual employee rights-Whistle blowing-definition-Aspects-Intellectual Property Rights (IPR)-Meaning-Need for protection- Briefly description of concept of patents, Copy right, Trademark	2	
		TOTAL HOURS	26 Hrs	

3. Format for CIE Written Test

Course Name	Indian Constitution	Test	1/11/111	Sem	III/IV
Course Code	3445	Duration	80 Min	Marks	30

Note: Answer any one full question from each section. Each full question carries 10 marks.

Section	Assessment Questions	Cognitive	Course	Marks
		Levels	Outcome	
I.	1 or 2			
II.	3 or 4			
III.	5 or 6			

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

4. References

- 1. Introduction to the Constitution of India- Dr. Durga Das Basu
- 2. Empowerment of rural women in India-Hemalatha H.M and Rameshwari Varma, Hema Prakashana

5. CIE AND SEE Assessment Methodologies

Sl. No.	Assessment	Test Week	Duration in minutes	Max. Marks	Conversion
1.	CIE-1 Written Test	6	80	30	Average of three tests
2.	CIE-2 Written Test	11	80	30	30
3.	CIE-3 Written Test	16	80	30	
4.	CIE-4 MCQ	8	60	20	Average of two CIE=20
5.	CIE-5 Open Book Test	IE-5 Open Book Test 15 60 20		GIE-20	
	50				
	Semester End Examination(Practice)				
Total Marks					50